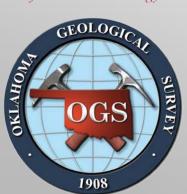
CITY COUNCIL CONFERENCE

MUNICIPAL BUILDING CONFERENCE ROOM 201 WEST GRAY, NORMAN, OK

JANUARY 22, 2019


5:30 P.M.

1. PRESENTATION AND DISCUSSION REGARDING THE NON-POTABLE REUSE PILOT PROJECT.

Governor's Water Conference and Research Symposium Midwest City, OK Dec 6, 2018

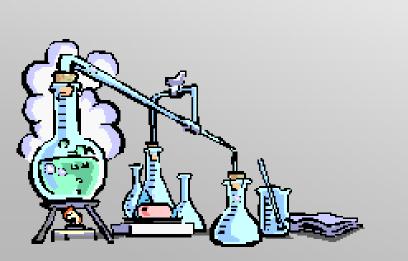
POTABLE WATER REUSE SYSTEM: EXAMINING CONSTITUENTS OF EMERGING CONCERN, ADVANCED TREATMENT, AND RECLAMATION OPTIONS

Kyle E. Murray, Ph.D., Hydrogeologist

Oklahoma Geological Survey, University of Oklahoma

Kyle.Murray@OU.edu

Ken Komiske, Director of Utilities


City of Norman

Ken.Komiske@NormanOK.gov

Constituents (Contaminants, Compounds) of Emerging Concern (CEC)

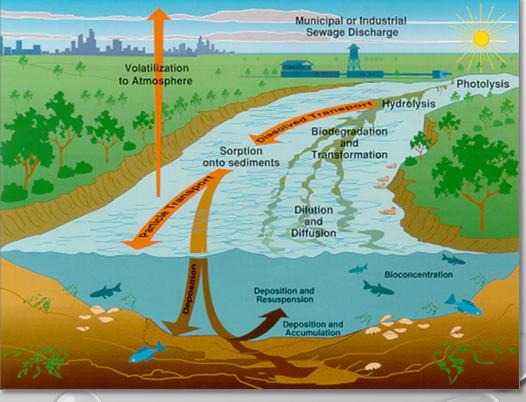
CEC are chemical solutes potentially found in waters at trace levels, ng/L, that may have an impact on aquatic and animal life (US EPA 2015)

- Over 84,000 chemicals in use today as inventoried by US EPA under the Toxic Substances Control Act (TSCA)
- Approximately 700 new chemicals added each year to the US EPA inventory

Pharmaceuticals and Personal Care Products (PPCPs)

H₂O Augmentation Plan: Indirect Potable Reuse of Reclaimed Water

Horton, A.D., 2018, Baseline concentrations of contaminants of emerging concern in Lake Thunderbird watershed, planning for indirect potable reuse in Oklahoma: Norman, OK, University of Oklahoma, 108 p.


Jones, S.M., 2016, Nanofiltration rejection of contaminants of emerging concern from municipal water resource recovery facility secondary effluents for potable reuse applications: Fayetteville, AR, University of Arkansas, 196 p.

Laubacher, J., 2016, Modeling and analysis of constituents of emerging concern through wastewater treatment processes: Norman, OK, University of Oklahoma, 181 p.

Thornton, E.K., 2017, Microcosm assessment of the natural processes affecting chemical concentrations of emerging concern in secondary effluent: Norman, OK, University of Oklahoma, 87 p.

WTP = (drinking) Water Treatment Plant NWRF = Norman Water Reclamation Facility AL = Augmentation Line

DBC = Dave Blue Creek LT = Lake Thunderbird

Pharmaceutical and Personal Care Products (PPCPs) in Water Sources

DBC

Microcosm

NWRF

Lake Thunderbird

18 compounds	Jul-14	Jan-16	Sep-16	Sep-16		Sui	mmer	Jun 20	016			F	all O	ct 2016	3			W	inter .	Jan 20	17			Sp	oring A	pr 20	17	
A I d	J-EFF	L-EFF	T-EFF	T-DBC	DAM	INT	LR	CC	НС	DBC	DAM	INT	LR	CC	НС	DBC	DAM	INT	LR	CC	HC	DBC	DAM	INT	LR	CC	НС	DBC
Analyte			0 days	15 days	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11
Acetaminophen	<5	<500	34	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Albuterol	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Amoxicillin	4600	18000	180	<20	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80
Atenolol	300	90	340	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Azithromycin	<20	200	<10	<10	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Bezafibrate	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Butalbital	54	11	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carbadox	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carbamazepine	400	110	110	68	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carisoprodol	130	ND	13	50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloramphenicol	<10	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cimetidine	<5	ND	690	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Clofibric Acid	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	5.5	7.5	42	8.9	35	23	21	53	19	19	27	<5	<5	190	<5	50	170
Dehydronifedipine	82	ND	5.8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Diazepam	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Diclofenac	93	ND	66	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Dilantin	130	ND	49	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Diltiazem	NA	24	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Detections:	8	6	9	2	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1
% Detections:	44%	33%	50%	11%	0%	0%	0%	0%	0%	0%	0%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	0%	0%	6%	0%	6%	6%

J-EFF = Secondary Effluent (Jones, 2016)

L-EFF = Secondary Effluent (Laubacher, 2016)

T-EFF = Secondary Effluent (Thornton, 2017)

T-DBC = Secondary Effluent after 15 Day Microcosm (Thornton, 2017)

Pharmaceutical and Personal Care Products (PPCPs) in Water Sources

DBC

Microcosm

NWRF

Lake Thunderbird

					7																							
18 compounds	Jul-14	Jan-16	Sep-16	Sep-16		Su	mmer	Jun 20	016				all Oc	:t 2016	6			W	inter J	Jan 20	17			Sp	oring A	Apr 20'	17	
Analyta	J-EFF	L-EFF	T-EFF	T-DBC	DAM	INT	LR	CC	НС	DBC	DAM	INT	LR	CC	HC	DBC	DAM	INT	LR	CC	HC	DBC	DAM	INT	LR	CC	HC	DBC
Analyte			0 days	15 days	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11
Erythromycin	220	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Flumeqine	<10	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Fluoxetine (Prozac)	90	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Gemfibrozil	550	1400	39	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	6.2	<5	<5
lbuprofen	<10	ND	520	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	36	<10	<10	<10	<10	<10	<10	<10
lohexol (x-ray contrast agent)	<10	37000	1100	220	<10	<10	220	<10	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
lopromide	270	16	5.4	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ketoprofen	150	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ketorolac	<5	ND	36	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Lidocaine	370	290	1000	43	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Lincomycin	15	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	30	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lopressor (Metoprolol)	1200	1200	100	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Meclofenamic Acid	<5	ND	67	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	7.4	<5	<5	<5	<5	<5	<5	<5	<5	<5
Meprobamate	460	45	190	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Metformin	NA	NA	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naproxen	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Nifedipine	34	ND	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Oxolinic acid	<10	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Detections:	10	6	9	2	0	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0
% Detections:	56%	33%	50%	11%	0%	0%	6%	0%	0%	6%	0%	6%	0%	0%	0%	0%	0%	0%	6%	0%	6%	0%	0%	0%	0%	6%	0%	0%

J-EFF = Secondary Effluent (Jones, 2016)

T-EFF = Secondary Effluent (Thornton, 2017)

L-EFF = Secondary Effluent (Laubacher, 2016)

T-DBC = Secondary Effluent after 15 Day Microcosm (Thornton, 2017)

Pharmaceutical and Personal Care Products (PPCPs) in Water Sources

DBC

Microcosm

NWRF

Lake Thunderbird

					<u></u>																							
17 compounds	Jul-14	Jan-16	Sep-16	Sep-16		Su	mmer	Jun 20	016			F	all Oc	t 2016	3			W	inter J	lan 20	17			Sp	ring A	Apr 20	17	
Amaluta	J-EFF	L-EFF	T-EFF	T-DBC	DAM	INT	LR	CC	HC	DBC	DAM	INT	LR	CC	HC	DBC	DAM	INT	LR	CC	НС	DBC	DAM	INT	LR	CC	HC	DBC
Analyte			0 days	15 days	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11	1	4	6	7	8	11
Pentoxifylline	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Phenazone	5.6	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Primidone	170	94	75	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Salicylic Acid	NA	<100	580	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	790	<100	490	650	<100	330	240	<100	230	280
Sulfachloropyridazine	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfadiazine	<5	ND	<5	<5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Sulfadimethoxine	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfamerazine	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfamethazine	12	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfamethizole	<5	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfamethoxazole	1300	1000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sulfathiazole	33	ND	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Theophylline	<20	<200	<20	30	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Triclocarban	NA	NA	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	5.1	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Triclosan	43	<10	22	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Trimethoprim	1000	440	440	<5	<5	<5	<5	<5	<5	<5	<5	<5	9.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Warfarin	<5	ND	5.4	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Detections:	7	3	5	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	1	1	0	1	1
% Detections:	41%	18%	29%	6%	0%	0%	0%	0%	0%	0%	0%	0%	6%	6%	0%	0%	0%	0%	6%	0%	6%	6%	0%	6%	6%	0%	6%	6%

J-EFF = Secondary Effluent (Jones, 2016)

L-EFF = Secondary Effluent (Laubacher, 2016)

T-EFF = Secondary Effluent (Thornton, 2017)

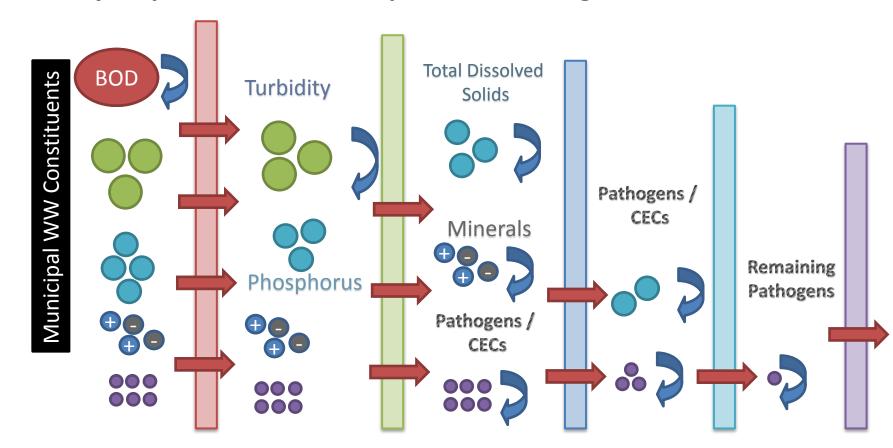
T-DBC = Secondary Effluent after 15 Day Microcosm (Thornton, 2017)

Concentrations detected in Lake Thunderbird were higher for 14 out of 17 benchmark compounds when compared to concentrations observed by Thornton (2017) after 15-day microcosm studies with Dave Blue Creek sediment and Photosynthetically Active Radiation (PAR). Red italicized text indicates that Lake Thunderbird concentration is higher (dirtier) than naturally attenuated effluent.

			Dave Blue Creek	Lake Thunderbird		
		NWRF Effluent	SED+PAR 15 Day	Maximum Conc,		
	Benchmark	Maximum Conc	Microcosm Conc	*Split Sample Conc	Standard	
Class	Compound	(ng/L)	(ng/L)	(ng/L)	(ng/L)	Half-Life
	2,4-D	62	<5	200	<i>7</i> 0 , 000	10 days
Pesticides	Atrazine	16	<5	29	3000	60 days
	Simazine	300	<5	1100	4000	145 days
	BPA	<10	<10	120	20,000	NA
Industrials	NP	510	1200	500	20,000	10-15 hrs
industrials	OP	350	<50	410	100,000	6.9 hrs
	TCPP	560	<100	290	NA	NA
	Clofibric Acid	<5	<5	190	NA	2 days
PPCPs	lopromide	270	<5	4.5*	NA	3.1 days
	Salicylic Acid	580	<100	790	NA	NA
Hormones	Testosterone	11	<5	5.8	NA	NA
normones	Progesterone	<5	<5	<5	NA	NA
	Acesulfame-K	4100	160	97	NA	7-9 days
	Caffeine	60	7	30	NA	NA
Other	Cotinine	57	<10	24	NA	NA
	DEET	<100	16	78	200,000	5-15 days
	Propylparaben	24	<5	65*	NA	9.6-32.5 hrs

Summary: CEC & Wastewater Reuse in a Regional Water Supply System

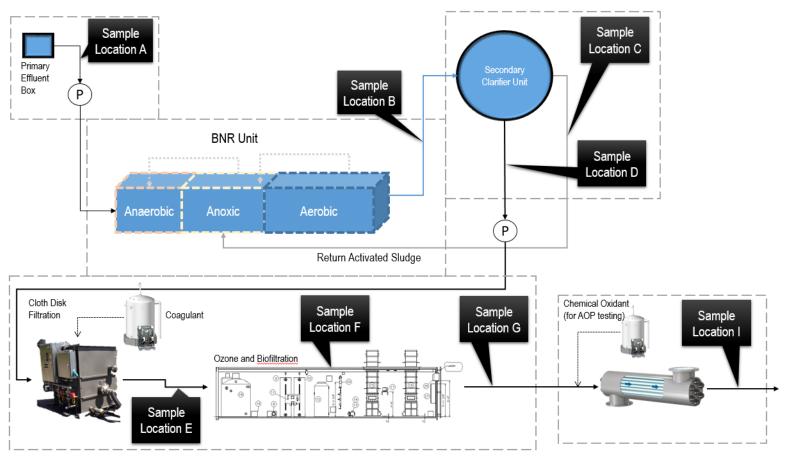
- Some CEC are present (ubiquitous) in all waters of the United States
 - Percentage of detections in Lake Thunderbird by class: pesticides (31.4%), industrials (9.0%), PPCPs (2.3%), hormones (2.6%), and others (18.9%)
 - Lake Thunderbird CEC concentrations versus 11 health standards = zero exceedances
- Typical water reclamation facility with primary and secondary treatment will reduce concentrations and remove a very high percentage of CEC
- Potable reuse of municipal wastewater is feasible and safe with or without advanced treatment or ultra-filtration
- Advanced treatment at the NWRF can remove 100% of the compounds if necessary


CITY OF NORMAN PROPOSED PILOT PROJECT DISCUSSION

SEPTEMBER 25, 2018

A pilot project is a small scale preliminary study conducted in order to evaluate feasibility, time, cost, adverse events, and effect to predict an appropriate capacity and improve upon the study design prior to performance of a full-scale project.

Pilot Project provides a roadmap for addressing IPR constituents


Pilot treatment processes will be a mix of full-scale facilities and pilot scale modules

Pilot modules will utilize available high quality work area

Profiling individual performance requires comprehensive sampling before and after each process

Piloting approach includes multiple technologies to optimize fullscale configuration

Phased Implementation

Plug-and-Play Configuration

Integration with WRF

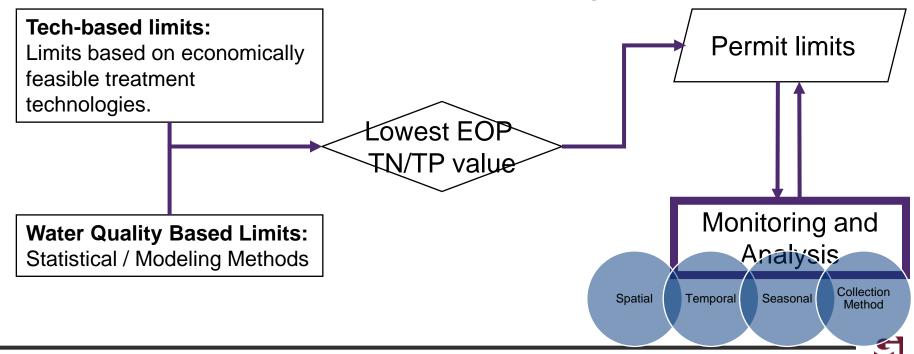
Hands-on Experience for WRF Staff

- Norman has the budget in place to pay for the pilot project without a change in water or sewer rates
- In addition to review by DEQ, OWRB, OU, Peer reviews, a review committee of members from Norman, Midwest City and Del City is anticipated
- A review committee can track progress, check milestones and communicate to communities

Be used only when needed

Provide valuable lake quality data

IPR has the potential to:


Improve Lake Thunderbird impaired water quality

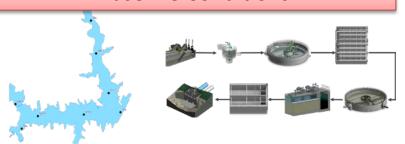
Supply drought proof source water

Potential IPR permit would be first of it's kind as a living permit

Example: Development and Monitoring Nutrients

Roadmap for water reuse approval and acceptance

Current Impairments



Element /			EP.	A Guideline
Substance	Symbol	WHO Guideline	Primarry	Secondary
Muninium	Al	0.2 mg/1		0.05 - 0.2 mg/J
Ammonia	NH4	No Guideline		
Antimony	Sb	0.005 mg/l	0.406 mg/1	
Arsenic	Ax	0.01 mg/1	0:010 mg/1	
Barium	Ba	0.3 mg/1	2 mg/1	
Berryllium	Be	No Guideline	0:004 mg/l	
Boron	В	0.3 mg/1	1000000	
Cadmium	Cd	0.003 mg/1	0.005 mg/1	-
hloride	CI-	250 mg/1		250 mg/1
Chromium	Cri3, Cri6	0.05 mg/1	0.1 mg/1	
upper	Cu	2 mg/1	1.3 mg/1	1.0 mg/1
Syanide	CN-	0.07 mg/1	0.2 mg/1	
loride	F	1.5 mg/1	4.0 mg/1	2.0 mg/1
on	Fe	No Guideline		0.3 mg/1
ead	РЪ	0.01 mg/1	0.015 mg / I	
Manganese	Mn	0.5 mg/1		0.05 mg/1
Mercury	Hg	0.001 mg/1	0.002 mg/1	
Molybdenum	Mb	0.07 mg/1		
Nickel	Ni	0.02 mg/1		
ielenium	Se	0.01 mg/1	0.05 mg/1	
ilver	Ag	No Guideline		
Sodium	Na	200 mg/1		
Tin .	Sn	No Guideline		
Uranium	U	1.4 mg/1		
Zinc	Zn	3 mg/1		
Nitrate - Nitrite	NO3, NO2	50 mg/1 total N	10 - 1 mg/1	
ulfate	804	500 mg/1	1000	

Baseline Conditions

Performance Demonstration

Diverse interest in Lake Thunderbird reuse

